×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18272v1 Announce Type: new
Abstract: We propose a method based on the Hilbert-Huang transform (HHT) to recover the high-energy waveform of low-frequency quasi-periodic oscillations (LFQPOs). Based on the method, we successfully obtain the modulation of the phase-folded light curve above 170 keV using the QPO phase reconstructed at lower energies in MAXI J1535-571 with Insight-HXMT observations. A comprehensive simulation study is conducted to demonstrate that such modulation indeed originates from the QPO. Thus the highest energies turn out to significantly exceed the upper limit of ~100 keV for QPOs reported previously using the Fourier method, marking the first opportunity to study QPO properties above 100 keV in this source. Detailed analyses of these high-energy QPO profiles reveal different QPO properties between the 30-100 keV and 100-200 keV energy ranges: the phase lag remains relatively stable, and the amplitude slightly increases below ~100 keV, whereas above this threshold, soft phase lags and a decrease in amplitude are observed. Given the reports of a hard tail detection in broad spectroscopy, we propose that the newly discovered QPO properties above 100 keV are dominated by the hard tail component, possibly stemming from a relativistic jet. Our findings also indicate a strong correlation between the QPOs originating from the jet and corona, supporting the scenario of jet-corona coupling precssion. We emphasize that our proposed HHT-based method can serve as an efficient manner in expanding the high energy band for studying QPOs, thereby enhancing our understanding of their origin.

Click here to read this post out
ID: 805589; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: