×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18290v1 Announce Type: new
Abstract: In this study, we explore the characteristics of carbon stars within our Galaxy through a comprehensive analysis of observational data spanning visual and infrared (IR) bands. Leveraging datasets from IRAS, ISO, Akari, MSX, 2MASS, WISE, Gaia DR3, AAVSO, and the SIMBAD object database, we conduct a detailed comparison between the observational data and theoretical models. To facilitate this comparison, we introduce various IR two-color diagrams (2CDs), IR color-magnitude diagrams (CMDs), and spectral energy distributions (SEDs). We find that the CMDs, which utilize the latest distance and extinction data from Gaia DR3 for a substantial number of carbon stars, are very useful to distinguish carbon-rich asymptotic giant branch (CAGB) stars from extrinsic carbon stars that are not in the AGB phase. To enhance the accuracy of our analysis, we employ theoretical radiative transfer models for dust shells around CAGB stars. These theoretical dust shell models demonstrate a commendable ability to approximate the observations of CAGB stars across various SEDs, 2CDs, and CMDs. We present the infrared properties of known pulsating variables and explore the infrared variability of the sample stars by analyzing WISE photometric data spanning the last 14 yr. Additionally, we present a novel catalog of CAGB stars, offering enhanced reliability and a wealth of additional information.

Click here to read this post out
ID: 805590; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: