×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18354v1 Announce Type: new
Abstract: Aims. Solar active regions (ARs), which are formed by flux emergence, serve as the primary sources of solar eruptions. However, the specific physical mechanism that governs the emergence process and its relationship with flare productivity remains to be thoroughly understood. Methods. We examined 136 emerging ARs, focusing on the evolution of their magnetic helicity and magnetic energy during the emergence phase. Based on the relation between helicity accumulation and magnetic flux evolution, we categorized the samples and investigated their flare productivity. Results. The emerging ARs we studied can be categorized into three types, Type-I, Type-II, and Type-III, and they account for 52.2%, 25%, and 22.8% of the total number in our sample, respectively. Type-I ARs exhibit a synchronous increase in both the magnetic flux and magnetic helicity, while the magnetic helicity in Type-II ARs displays a lag in increasing behind the magnetic flux. Type-III ARs show obvious helicity injections of opposite signs. Significantly, 90% of the flare-productive ARs (flare index > 6) were identified as Type-I ARs, suggesting that this type of AR has a higher potential to become flare productive. In contrast, Type-II and Type-III ARs exhibited a low and moderate likelihood of becoming active, respectively. Our statistical analysis also revealed that Type-I ARs accumulate more magnetic helicity and energy, far beyond what is found in Type-II and Type-III ARs. Moreover, we observed that flare-productive ARs consistently accumulate a significant amount of helicity and energy during their emergence phase. Conclusions. These findings provide valuable insight into the flux emergence phenomena, offering promising possibilities for early-stage predictions of solar eruptions.

Click here to read this post out
ID: 805595; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: