×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18244v1 Announce Type: new
Abstract: We present comprehensive investigations into the structural, superconducting, and topological properties of Bi$_2$PdPt. Magnetization and heat capacity measurements performed on polycrystalline Bi$_2$PdPt demonstrate a superconducting transition at $\approx$ 0.8 K. Moreover, muon spin relaxation/rotation ($\mu$SR) measurements present evidence for a time reversal symmetry preserving, isotropically gapped superconducting state in Bi$_2$PdPt. We have also performed density-functional theory (DFT) calculations on Bi$_2$PdPt alongside the more general isostructural systems, BiPd$_{x}$Pt$_{1-x}$, of which Bi$_2$PdPt and $\gamma$-BiPd are special cases for $x=0.5$ and $x=1$ respectively. We have calculated the $Z_2$ topological index from our DFT calculations for a range of substitution fractions, $x$, between $x=0$ and $x=1$ characterizing the topology of the band structure. We find a non-trivial topological state when $x>0.75$ and a trivial topological state when $x<0.75$. Therefore our results indicate that BiPd$_{x}$Pt$_{1-x}$ could be a topological superconductor for $x>0.75$.

Click here to read this post out
ID: 805696; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: