×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18303v1 Announce Type: new
Abstract: Excitons, as bound states of electrons and holes, embody the solid state analogue of the hydrogen atom, whose quantum spectrum is explained within a classical framework by the Bohr-Sommerfeld atomic model. In a first hydrogenlike approximation the spectra of excitons are also well described by a Rydberg series, however, due to the surrounding crystal environment deviations from this series can be observed. A theoretical treatment of excitons in cuprous oxide needs to include the band structure of the crystal, leading to a prominent fine-structure splitting in the quantum spectra. This is achieved by introducing additional spin degrees of freedom into the system, making the existence and meaningfulness of classical exciton orbits in the physical system a non-trivial question. Recently, we have uncovered the contributions of periodic exciton orbits directly in the quantum mechanical recurrence spectra of cuprous oxide [J. Ertl et al., Phys. Rev. Lett. 129, 067401 (2022)] by application of a scaling technique and fixing the energy of the classical dynamics to a value corresponding to a principle quantum number $n=5$ in the hydrogenlike case. Here, we present a comprehensive derivation of the classical and semiclassical theory of excitons in cuprous oxide. In particular, we investigate the energy dependence of the exciton dynamics. Both the semiclassical and quantum mechanical recurrence spectra exhibit stronger deviations from the hydrogenlike behavior with decreasing energy, which is related to a growing influence of the spin-orbit coupling and thus a higher velocity of the secular motion of the exciton orbits. The excellent agreement between semiclassical and quantum mechanical exciton recurrence spectra demonstrates the validity of the classical and semiclassical approach to excitons in cuprous oxide.

Click here to read this post out
ID: 805700; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 16
CC:
No creative common's license
Comments: