×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.17939v1 Announce Type: new
Abstract: This research explores the application of a genetic algorithm metaheuristic enriched by the wisdom of crowds in order to address the NP-Complete matrix domination problem (henceforth: TMDP) which is itself a constraint on related problems applied in graphs. Matrix domination involves accurately placing a subset of cells, referred to as dominators, within a matrix with the goal of their dominating the remainder of the cells. This research integrates the exploratory nature of a genetic algorithm with the wisdom of crowds to find more optimal solutions with user-defined parameters to work within computational complexity considerations and gauge performance mainly with a fitness evaluation function and a constraining function to combat the stochastic nature of genetic algorithms. With this, I propose a novel approach to MDP with a genetic algorithm that incorporates the wisdom of crowds, emphasizing collective decision-making in the selection process, and by exploring concepts of matrix permutations and their relevance in finding optimal solutions. Results demonstrate the potential of this convergence to generate efficient solutions, optimizing the trade-off between the number of dominators and their strategic placements within the matrices while efficiently ensuring consistent and complete matrix domination.

Click here to read this post out
ID: 805797; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: