×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18085v1 Announce Type: new
Abstract: With exponential growth in distributed energy resources (DERs) coupled with at-capacity distribution grid infrastructure, prosumers cannot always export all extra power to the grid without violating technical limits. Consequently, a slew of dynamic hosting capacity (DHC) algorithms have emerged for optimal utilization of grid infrastructure while maximizing export from DERs. Most of these DHC algorithms utilize the concept of operating envelopes (OE)}, where the utility gives prosumers technical power export limits, and they are free to export power within these limits. Recent studies have shown that OE-based frameworks have drawbacks, as most develop power export limits based on convex or linear grid models. As OEs must capture extreme operating conditions, both convex and linear models can violate technical limits in practice because they approximate grid physics. However, AC models are unsuitable because they may not be feasible within the whole region of OE. We propose a new two-stage optimization framework for DHC built on three-phase AC models to address the current gaps. In this approach, the prosumers first run a receding horizon multi-period optimization to identify optimal export power setpoints to communicate with the utility. The utility then performs an infeasibility-based optimization to either accept the prosumer's request or dispatch an optimal curtail signal such that overall system technical constraints are not violated. To explore various curtailment strategies, we develop an L1, L2, and Linf norm-based dispatch algorithm with an exact three-phase AC model. We test our framework on a 1420 three-phase node meshed distribution network and show that the proposed algorithm optimally curtails DERs while guaranteeing the AC feasibility of the network.

Click here to read this post out
ID: 805842; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: