×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18088v1 Announce Type: new
Abstract: We propose a new neural network based large eddy simulation framework for the incompressible Navier-Stokes equations based on the paradigm "discretize first, filter and close next". This leads to full model-data consistency and allows for employing neural closure models in the same environment as where they have been trained. Since the LES discretization error is included in the learning process, the closure models can learn to account for the discretization.
Furthermore, we introduce a new divergence-consistent discrete filter defined through face-averaging. The new filter preserves the discrete divergence-free constraint by construction, unlike general discrete filters such as volume-averaging filters. We show that using a divergence-consistent LES formulation coupled with a convolutional neural closure model produces stable and accurate results for both a-priori and a-posteriori training, while a general (divergence-inconsistent) LES model requires a-posteriori training or other stability-enforcing measures.

Click here to read this post out
ID: 805844; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 14
CC:
No creative common's license
Comments: