×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18133v1 Announce Type: new
Abstract: Association Rule Mining (ARM) is the task of learning associations among data features in the form of logical rules. Mining association rules from high-dimensional numerical data, for example, time series data from a large number of sensors in a smart environment, is a computationally intensive task. In this study, we propose an Autoencoder-based approach to learn and extract association rules from time series data (AE SemRL). Moreover, we argue that in the presence of semantic information related to time series data sources, semantics can facilitate learning generalizable and explainable association rules. Despite enriching time series data with additional semantic features, AE SemRL makes learning association rules from high-dimensional data feasible. Our experiments show that semantic association rules can be extracted from a latent representation created by an Autoencoder and this method has in the order of hundreds of times faster execution time than state-of-the-art ARM approaches in many scenarios. We believe that this study advances a new way of extracting associations from representations and has the potential to inspire more research in this field.

Click here to read this post out
ID: 805869; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 14
CC:
No creative common's license
Comments: