×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18162v1 Announce Type: new
Abstract: Microsoft Active Directory (AD) is the default security management system for Window domain network. We study the problem of placing decoys in AD network to detect potential attacks. We model the problem as a Stackelberg game between an attacker and a defender on AD attack graphs where the defender employs a set of decoys to detect the attacker on their way to Domain Admin (DA). Contrary to previous works, we consider time-varying (temporal) attack graphs. We proposed a novel metric called response time, to measure the effectiveness of our decoy placement in temporal attack graphs. Response time is defined as the duration from the moment attackers trigger the first decoy to when they compromise the DA. Our goal is to maximize the defender's response time to the worst-case attack paths. We establish the NP-hard nature of the defender's optimization problem, leading us to develop Evolutionary Diversity Optimization (EDO) algorithms. EDO algorithms identify diverse sets of high-quality solutions for the optimization problem. Despite the polynomial nature of the fitness function, it proves experimentally slow for larger graphs. To enhance scalability, we proposed an algorithm that exploits the static nature of AD infrastructure in the temporal setting. Then, we introduce tailored repair operations, ensuring the convergence to better results while maintaining scalability for larger graphs.

Click here to read this post out
ID: 805883; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: