×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18252v1 Announce Type: new
Abstract: Visual representation learning has been a cornerstone in computer vision, evolving from supervised learning with human-annotated labels to aligning image-text pairs from the Internet. Despite recent advancements in multi-modal large language models (MLLMs), the visual representations they rely on, such as CLIP embeddings, often lack access to external world knowledge critical for real-world visual reasoning. In this work, we propose Visual Table, a novel visual representation tailored for MLLMs. It provides hierarchical text descriptions of holistic visual scenes, consisting of a scene description and multiple object-centric descriptions that encompass categories, attributes, and knowledge at instance level. We further develop a scalable generator for visual table generation and train it on small-scale annotations from GPT4V. Extensive evaluations demonstrate that, with generated visual tables as additional visual representations, our model can consistently outperform the state-of-the-art (SOTA) MLLMs across diverse benchmarks. When visual tables serve as standalone visual representations, our model can closely match or even beat the SOTA MLLMs that are built on CLIP visual embeddings. Our code is available at https://github.com/LaVi-Lab/Visual-Table.

Click here to read this post out
ID: 805938; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: