×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18287v1 Announce Type: new
Abstract: We develop the frozen Gaussian approximation (FGA) for the fractional Schr\"odinger equation in the semi-classical regime, where the solution is highly oscillatory when the scaled Planck constant $\varepsilon$ is small. This method approximates the solution to the Schr\"odinger equation by an integral representation based on asymptotic analysis and provides a highly efficient computational method for high-frequency wave function evolution. In particular, we revise the standard FGA formula to address the singularities arising in the higher-order derivatives of coefficients of the associated Hamiltonian flow that are second-order continuously differentiable or smooth in conventional FGA analysis. We then establish its convergence to the true solution. Additionally, we provide some numerical examples to verify the accuracy and convergence behavior of the frozen Gaussian approximation method.

Click here to read this post out
ID: 805959; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: