×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18296v1 Announce Type: new
Abstract: Traditional approaches to semantic communication tasks rely on the knowledge of the signal-to-noise ratio (SNR) to mitigate channel noise. However, these methods necessitate training under specific SNR conditions, entailing considerable time and computational resources. In this paper, we propose GeNet, a Graph Neural Network (GNN)-based paradigm for semantic communication aimed at combating noise, thereby facilitating Task-Oriented Communication (TOC). We propose a novel approach where we first transform the input data image into graph structures. Then we leverage a GNN-based encoder to extract semantic information from the source data. This extracted semantic information is then transmitted through the channel. At the receiver's end, a GNN-based decoder is utilized to reconstruct the relevant semantic information from the source data for TOC. Through experimental evaluation, we show GeNet's effectiveness in anti-noise TOC while decoupling the SNR dependency. We further evaluate GeNet's performance by varying the number of nodes, revealing its versatility as a new paradigm for semantic communication. Additionally, we show GeNet's robustness to geometric transformations by testing it with different rotation angles, without resorting to data augmentation.

Click here to read this post out
ID: 805964; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: