×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18305v1 Announce Type: new
Abstract: Recommender systems have been actively studied and applied in various domains to deal with information overload. Although there are numerous studies on recommender systems for movies, music, and e-commerce, comparatively less attention has been paid to the recommender system for NFTs despite the continuous growth of the NFT market. This paper presents a recommender system for NFTs that utilizes a variety of data sources, from NFT transaction records to external item features, to generate precise recommendations that cater to individual preferences. We develop a data-efficient graph-based recommender system to efficiently capture the complex relationship between each item and users and generate node(item) embeddings which incorporate both node feature information and graph structure. Furthermore, we exploit inputs beyond user-item interactions, such as image feature, text feature, and price feature. Numerical experiments verify the performance of the graph-based recommender system improves significantly after utilizing all types of item features as side information, thereby outperforming all other baselines.

Click here to read this post out
ID: 805967; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: