×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18318v1 Announce Type: new
Abstract: Adversarial attacks have demonstrated the vulnerability of Machine Learning (ML) image classifiers in Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) systems. An adversarial attack can deceive the classifier into making incorrect predictions by perturbing the input SAR images, for example, with a few scatterers attached to the on-ground objects. Therefore, it is critical to develop robust SAR ATR systems that can detect potential adversarial attacks by leveraging the inherent uncertainty in ML classifiers, thereby effectively alerting human decision-makers. In this paper, we propose a novel uncertainty-aware SAR ATR for detecting adversarial attacks. Specifically, we leverage the capability of Bayesian Neural Networks (BNNs) in performing image classification with quantified epistemic uncertainty to measure the confidence for each input SAR image. By evaluating the uncertainty, our method alerts when the input SAR image is likely to be adversarially generated. Simultaneously, we also generate visual explanations that reveal the specific regions in the SAR image where the adversarial scatterers are likely to to be present, thus aiding human decision-making with hints of evidence of adversarial attacks. Experiments on the MSTAR dataset demonstrate that our approach can identify over 80% adversarial SAR images with fewer than 20% false alarms, and our visual explanations can identify up to over 90% of scatterers in an adversarial SAR image.

Click here to read this post out
ID: 805976; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: