×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18323v1 Announce Type: new
Abstract: With the continuous evolution of networking technologies, multi-modal services that involve video, audio, and haptic contents are expected to become the dominant multimedia service in the near future. Edge caching is a key technology that can significantly reduce network load and content transmission latency, which is critical for the delivery of multi-modal contents. However, existing caching approaches only rely on a limited number of factors, e.g., popularity, to evaluate their importance for caching, which is inefficient for caching multi-modal contents, especially in dynamic network environments. To overcome this issue, we propose a content importance-based caching scheme which consists of a content importance evaluation model and a caching model. By leveraging dueling double deep Q networks (D3QN) model, the content importance evaluation model can adaptively evaluate contents' importance in dynamic networks. Based on the evaluated contents' importance, the caching model can easily cache and evict proper contents to improve caching efficiency. The simulation results show that the proposed content importance-based caching scheme outperforms existing caching schemes in terms of caching hit ratio (at least 15% higher), reduced network load (up to 22% reduction), average number of hops (up to 27% lower), and unsatisfied requests ratio (more than 47% reduction).

Click here to read this post out
ID: 805979; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: