×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18328v1 Announce Type: new
Abstract: Information from neuroimaging examinations (CT, MRI) is increasingly used to support diagnoses of dementia, e.g., Alzheimer's disease. While current clinical practice is mainly based on visual inspection and feature engineering, Deep Learning approaches can be used to automate the analysis and to discover new image-biomarkers. Part-prototype neural networks (PP-NN) are an alternative to standard blackbox models, and have shown promising results in general computer vision. PP-NN's base their reasoning on prototypical image regions that are learned fully unsupervised, and combined with a simple-to-understand decision layer. We present PIPNet3D, a PP-NN for volumetric images. We apply PIPNet3D to the clinical case study of Alzheimer's Disease diagnosis from structural Magnetic Resonance Imaging (sMRI). We assess the quality of prototypes under a systematic evaluation framework, propose new metrics to evaluate brain prototypes and perform an evaluation with domain experts. Our results show that PIPNet3D is an interpretable, compact model for Alzheimer's diagnosis with its reasoning well aligned to medical domain knowledge. Notably, PIPNet3D achieves the same accuracy as its blackbox counterpart; and removing the remaining clinically irrelevant prototypes from its decision process does not decrease predictive performance.

Click here to read this post out
ID: 805983; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: