×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18371v1 Announce Type: new
Abstract: Well-designed current control is a key factor in ensuring the efficient and safe operation of modular multilevel converters (MMCs). Even though this control problem involves multiple control objectives, conventional current control schemes are comprised of independently designed decoupled controllers, e.g., proportional-integral (PI) or proportional-resonant (PR). Due to the bilinearity of the MMC dynamics, tuning PI and PR controllers so that good performance and constraint satisfaction are guaranteed is quite challenging. This challenge becomes more relevant in an AC/AC MMC configuration due to the complexity of tracking the single-phase sinusoidal components of the MMC output. In this paper, we propose a method to design a multivariable controller, i.e., a static feedback gain, to regulate the MMC currents. We use a physics-informed transformation to model the MMC dynamics linearly and synthesise the proposed controller. We use this linear model to formulate a linear matrix inequality that computes a feedback gain that guarantees safe and effective operation, including (i) limited tracking error, (ii) stability, and (iii) meeting all constraints. To test the efficacy of our method, we examine its performance in a direct AC/AC MMC simulated in Simulink/PLECS and in a scaled-down AC/AC MMC prototype to investigate the ultra-fast charging of electric vehicles.

Click here to read this post out
ID: 806010; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: