×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18374v1 Announce Type: new
Abstract: Most FPGA boards in the HPC domain are well-suited for parallel scaling because of the direct integration of versatile and high-throughput network ports. However, the utilization of their network capabilities is often challenging and error-prone because the whole network stack and communication patterns have to be implemented and managed on the FPGAs. Also, this approach conceptually involves a trade-off between the performance potential of improved communication and the impact of resource consumption for communication infrastructure, since the utilized resources on the FPGAs could otherwise be used for computations. In this work, we investigate this trade-off, firstly, by using synthetic benchmarks to evaluate the different configuration options of the communication framework ACCL and their impact on communication latency and throughput. Finally, we use our findings to implement a shallow water simulation whose scalability heavily depends on low-latency communication. With a suitable configuration of ACCL, good scaling behavior can be shown to all 48 FPGAs installed in the system. Overall, the results show that the availability of inter-FPGA communication frameworks as well as the configurability of framework and network stack are crucial to achieve the best application performance with low latency communication.

Click here to read this post out
ID: 806012; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: