×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18393v1 Announce Type: new
Abstract: Graph learning is widely recognized as a crucial technique in multi-view clustering. Existing graph learning methods typically involve constructing an adaptive neighbor graph based on probabilistic neighbors and then learning a consensus graph to for clustering, however, they are confronted with two limitations. Firstly, they often rely on Euclidean distance to measure similarity when constructing the adaptive neighbor graph, which proves inadequate in capturing the intrinsic structure among data points in many real-world scenarios. Secondly, most of these methods focus solely on consensus graph, ignoring view-specific graph information. In response to the aforementioned drawbacks, we in this paper propose a novel tensor-based graph learning framework that simultaneously considers consistency and specificity for multi-view clustering. Specifically, we calculate the similarity distance on the Stiefel manifold to preserve the intrinsic structure among data points. By making an assumption that the learned neighbor graph of each view comprises both a consistent graph and a view-specific graph, we formulate a new tensor-based target graph learning paradigm. Owing to the benefits of tensor singular value decomposition (t-SVD) in uncovering high-order correlations, this model is capable of achieving a complete understanding of the target graph. Furthermore, we develop an iterative algorithm to solve the proposed objective optimization problem. Experiments conducted on real-world datasets have demonstrated the superior performance of the proposed method over some state-of-the-art multi-view clustering methods. The source code has been released on https://github.com/lshi91/CSTGL-Code.

Click here to read this post out
ID: 806020; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: