×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18488v1 Announce Type: new
Abstract: This paper investigates guesswork over ordered statistics and formulates the complexity of ordered statistics decoding (OSD) in binary additive white Gaussian noise (AWGN) channels. It first develops a new upper bound of guesswork for independent sequences, by applying the Holder's inequity to Hamming shell-based subspaces. This upper bound is then extended to the ordered statistics, by constructing the conditionally independent sequences within the ordered statistics sequences. We leverage the established bounds to formulate the best achievable decoding complexity of OSD that ensures no loss in error performance, where OSD stops immediately when the correct codeword estimate is found. We show that the average complexity of OSD at maximum decoding order can be accurately approximated by the modified Bessel function, which increases near-exponentially with code dimension. We also identify a complexity saturation threshold, where increasing the OSD decoding order beyond this threshold improves error performance without further raising decoding complexity. Finally, the paper presents insights on applying these findings to enhance the efficiency of practical decoder implementations.

Click here to read this post out
ID: 806064; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: