×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18622v1 Announce Type: new
Abstract: This research addresses the critical necessity for advanced rapid response operations in managing a spectrum of environmental hazards. We propose a novel framework, qIoV that integrates quantum computing with the Internet-of-Vehicles (IoV) to leverage the computational efficiency, parallelism, and entanglement properties of quantum mechanics. Our approach involves the use of environmental sensors mounted on vehicles for precise air quality assessment. These sensors are designed to be highly sensitive and accurate, leveraging the principles of quantum mechanics to detect and measure environmental parameters. A salient feature of our proposal is the Quantum Mesh Network Fabric (QMF), a system designed to dynamically adjust the quantum network topology in accordance with vehicular movements. This capability is critical to maintaining the integrity of quantum states against environmental and vehicular disturbances, thereby ensuring reliable data transmission and processing. Moreover, our methodology is further augmented by the incorporation of a variational quantum classifier (VQC) with advanced quantum entanglement techniques. This integration offers a significant reduction in latency for hazard alert transmission, thus enabling expedited communication of crucial data to emergency response teams and the public. Our study on the IBM OpenQSAM 3 platform, utilizing a 127 Qubit system, revealed significant advancements in pair plot analysis, achieving over 90% in precision, recall, and F1-Score metrics and an 83% increase in the speed of toxic gas detection compared to conventional methods.Additionally, theoretical analyses validate the efficiency of quantum rotation, teleportation protocols, and the fidelity of quantum entanglement, further underscoring the potential of quantum computing in enhancing analytical performance.

Click here to read this post out
ID: 806120; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: