×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18812v1 Announce Type: new
Abstract: The decades-old Pattern Matching with Edits problem, given a length-$n$ string $T$ (the text), a length-$m$ string $P$ (the pattern), and a positive integer $k$ (the threshold), asks to list all fragments of $T$ that are at edit distance at most $k$ from $P$. The one-way communication complexity of this problem is the minimum amount of space needed to encode the answer so that it can be retrieved without accessing the input strings $P$ and $T$.
The closely related Pattern Matching with Mismatches problem (defined in terms of the Hamming distance instead of the edit distance) is already well understood from the communication complexity perspective: Clifford, Kociumaka, and Porat [SODA 2019] proved that $\Omega(n/m \cdot k \log(m/k))$ bits are necessary and $O(n/m \cdot k\log (m|\Sigma|/k))$ bits are sufficient; the upper bound allows encoding not only the occurrences of $P$ in $T$ with at most $k$ mismatches but also the substitutions needed to make each $k$-mismatch occurrence exact.
Despite recent improvements in the running time [Charalampopoulos, Kociumaka, and Wellnitz; FOCS 2020 and 2022], the communication complexity of Pattern Matching with Edits remained unexplored, with a lower bound of $\Omega(n/m \cdot k\log(m/k))$ bits and an upper bound of $O(n/m \cdot k^3\log m)$ bits stemming from previous research. In this work, we prove an upper bound of $O(n/m \cdot k \log^2 m)$ bits, thus establishing the optimal communication complexity up to logarithmic factors. We also show that $O(n/m \cdot k \log m \log (m|\Sigma|))$ bits allow encoding, for each $k$-error occurrence of $P$ in $T$, the shortest sequence of edits needed to make the occurrence exact.
We leverage the techniques behind our new result on the communication complexity to obtain quantum algorithms for Pattern Matching with Edits.

Click here to read this post out
ID: 806207; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: