×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18560v1 Announce Type: cross
Abstract: Voice assistants are now widely available, and to activate them a keyword spotting (KWS) algorithm is used. Modern KWS systems are mainly trained using supervised learning methods and require a large amount of labelled data to achieve a good performance. Leveraging unlabelled data through self-supervised learning (SSL) has been shown to increase the accuracy in clean conditions. This paper explores how SSL pretraining such as Data2Vec can be used to enhance the robustness of KWS models in noisy conditions, which is under-explored.
Models of three different sizes are pretrained using different pretraining approaches and then fine-tuned for KWS. These models are then tested and compared to models trained using two baseline supervised learning methods, one being standard training using clean data and the other one being multi-style training (MTR). The results show that pretraining and fine-tuning on clean data is superior to supervised learning on clean data across all testing conditions, and superior to supervised MTR for testing conditions of SNR above 5 dB. This indicates that pretraining alone can increase the model's robustness. Finally, it is found that using noisy data for pretraining models, especially with the Data2Vec-denoising approach, significantly enhances the robustness of KWS models in noisy conditions.

Click here to read this post out
ID: 806246; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: