×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2210.11634v4 Announce Type: replace
Abstract: Airplane refueling problem is a nonlinear unconstrained optimization problem with $n!$ feasible solutions. Given a fleet of $n$ airplanes with mid-air refueling technique, the question is to find the best refueling policy to make the last remaining airplane travels the farthest. In order to deal with the large scale of airplanes refueling instances, we proposed the definition of sequential feasible solution by employing the refueling properties of data structure. We proved that if an airplanes refueling instance has feasible solutions, it must have the sequential feasible solutions; and the optimal feasible solution must be the optimal sequential feasible solution. Then we proposed the sequential search algorithm which consists of two steps. The first step of the sequential search algorithm aims to seek out all of the sequential feasible solutions. When the input size of $n$ is greater than an index number, we proved that the number of the sequential feasible solutions will change to grow at a polynomial rate. The second step of the sequential search algorithm aims to search for the maximal sequential feasible solution by bubble sorting all of the sequential feasible solutions. Moreover, we built an efficient computability scheme, according to which we could forecast within a polynomial time the computational complexity of the sequential search algorithm that runs on any given airplanes refueling instance. Thus we could provide a computational strategy for decision makers or algorithm users by considering with their available computing resources.

Click here to read this post out
ID: 806266; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: