×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2401.16025v2 Announce Type: replace
Abstract: PPO (Proximal Policy Optimization) algorithm has demonstrated excellent performance in many fields, and it is considered as a simple version of TRPO (Trust Region Policy Optimization) algorithm. However, the ratio clipping operation in PPO may not always effectively enforce the trust region constraints, this can be a potential factor affecting the stability of the algorithm. In this paper, we propose Simple Policy Optimization (SPO) algorithm, which introduces a novel clipping method for KL divergence between the old and current policies. Extensive experimental results in Atari 2600 environments indicate that, compared to the mainstream variants of PPO, SPO achieves better sample efficiency, extremely low KL divergence, and higher policy entropy, and is robust to the increase in network depth or complexity. More importantly, SPO maintains the simplicity of an unconstrained first-order algorithm. Code is available at https://github.com/MyRepositories-hub/Simple-Policy-Optimization.

Click here to read this post out
ID: 806402; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: