×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.00211v2 Announce Type: replace
Abstract: The prediction of optical flow for occluded points is still a difficult problem that has not yet been solved. Recent methods use self-attention to find relevant non-occluded points as references for estimating the optical flow of occluded points based on the assumption of self-similarity. However, they rely on visual features of a single image and weak constraints, which are not sufficient to constrain the trained network to focus on erroneous and weakly relevant reference points. We make full use of online occlusion recognition information to construct occlusion extended visual features and two strong constraints, allowing the network to learn to focus only on the most relevant references without requiring occlusion ground truth to participate in the training of the network. Our method adds very few network parameters to the original framework, making it very lightweight. Extensive experiments show that our model has the greatest cross-dataset generalization. Our method achieves much greater error reduction, 18.6%, 16.2%, and 20.1% for all points, non-occluded points, and occluded points respectively from the state-of-the-art GMA-base method, MATCHFlow(GMA), on Sintel Albedo pass. Furthermore, our model achieves state-of-the-art performance on the Sintel bench-marks, ranking \#1 among all published methods on Sintel clean pass. The code will be open-source.

Click here to read this post out
ID: 806430; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: