×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.04125v2 Announce Type: replace
Abstract: Interpretable computer vision models can produce transparent predictions, where the features of an image are compared with prototypes from a training dataset and the similarity between them forms a basis for classification. Nevertheless these methods are computationally expensive to train, introduce additional complexity and may require domain knowledge to adapt hyper-parameters to a new dataset. Inspired by developments in object detection, segmentation and large-scale self-supervised foundation vision models, we introduce Component Features (ComFe), a novel explainable-by-design image classification approach using a transformer-decoder head and hierarchical mixture-modelling. With only global image labels and no segmentation or part annotations, ComFe can identify consistent image components, such as the head, body, wings and tail of a bird, and the image background, and determine which of these features are informative in making a prediction. We demonstrate that ComFe obtains higher accuracy compared to previous interpretable models across a range of fine-grained vision benchmarks, without the need to individually tune hyper-parameters for each dataset. We also show that ComFe outperforms a non-interpretable linear head across a range of datasets, including ImageNet, and improves performance on generalisation and robustness benchmarks.

Click here to read this post out
ID: 806435; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 15
CC:
No creative common's license
Comments: