×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18248v1 Announce Type: new
Abstract: In this paper, we develp a functional differentiability approach for solving statistical optimal allocation problems. We first derive Hadamard differentiability of the value function through a detailed analysis of the general properties of the sorting operator. Central to our framework are the concept of Hausdorff measure and the area and coarea integration formulas from geometric measure theory. Building on our Hadamard differentiability results, we demonstrate how the functional delta method can be used to directly derive the asymptotic properties of the value function process for binary constrained optimal allocation problems, as well as the two-step ROC curve estimator. Moreover, leveraging profound insights from geometric functional analysis on convex and local Lipschitz functionals, we obtain additional generic Fr\'echet differentiability results for the value functions of optimal allocation problems. These compelling findings motivate us to study carefully the first order approximation of the optimal social welfare. In this paper, we then present a double / debiased estimator for the value functions. Importantly, the conditions outlined in the Hadamard differentiability section validate the margin assumption from the statistical classification literature employing plug-in methods that justifies a faster convergence rate.

Click here to read this post out
ID: 806532; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 16
CC:
No creative common's license
Comments: