×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18041v1 Announce Type: new
Abstract: Control barrier functions (CBFs) have recently been introduced as a systematic tool to ensure safety by establishing set invariance. When combined with a control Lyapunov function (CLF), they form a safety-critical control mechanism. However, the effectiveness of CBFs and CLFs is closely tied to the system model. In practice, model uncertainty can jeopardize safety and stability guarantees and may lead to undesirable performance. In this paper, we develop a safe learning-based control strategy for switching systems in the face of uncertainty. We focus on the case that a nominal model is available for a true underlying switching system. This uncertainty results in piecewise residuals for each switching surface, impacting the CLF and CBF constraints. We introduce a batch multi-output Gaussian process (MOGP) framework to approximate these piecewise residuals, thereby mitigating the adverse effects of uncertainty. A particular structure of the covariance function enables us to convert the MOGP-based chance constraints CLF and CBF into second-order cone constraints, which leads to a convex optimization. We analyze the feasibility of the resulting optimization and provide the necessary and sufficient conditions for feasibility. The effectiveness of the proposed strategy is validated through a simulation of a switching adaptive cruise control system.

Click here to read this post out
ID: 806545; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 18
CC:
No creative common's license
Comments: