×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18445v1 Announce Type: new
Abstract: This paper extends various theoretical results from stationary data processing to cyclostationary (CS) processes under a unified framework. We first derive their asymptotic eigenbasis, which provides a link between their Fourier and Karhunen-Lo\`eve (KL) expansions, through a unitary transformation dictated by the cyclic spectrum. By exploiting this connection and the optimalities offered by the KL representation, we study the asymptotic performance of smoothing, filtering and prediction of CS processes, without the need for deriving explicit implementations. We obtain minimum mean squared error expressions that depend on the cyclic spectrum and include classical limits based on the power spectral density as particular cases. We conclude this work by applying the results to a practical scenario, in order to quantify the achievable gains of synchronous signal processing.

Click here to read this post out
ID: 806571; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: