×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2201.06180v2 Announce Type: replace
Abstract: Modern aircraft are designed with redundant control effectors to cater for fault tolerance and maneuverability requirements. This leads to aircraft being over-actuated and requires control allocation schemes to distribute the control commands among control effectors. Traditionally, optimization-based control allocation schemes are used; however, for nonlinear allocation problems, these methods require large computational resources. In this work, an artificial neural network (ANN) based nonlinear control allocation scheme is proposed. The proposed scheme is composed of learning the inverse of the control effectiveness map through ANN, and then implementing it as an allocator instead of solving an online optimization problem. Stability conditions are presented for closed-loop systems incorporating the allocator, and computational challenges are explored with piece-wise linear effectiveness functions and ANN-based allocators. To demonstrate the efficacy of the proposed scheme, it is compared with a standard quadratic programming-based method for control allocation.

Click here to read this post out
ID: 806622; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 21
CC:
No creative common's license
Comments: