×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2305.12523v2 Announce Type: replace-cross
Abstract: This paper studies an integrated sensing and communication (ISAC) system within a centralized cell-free massive MIMO (multiple-input multiple-output) network for target detection. ISAC transmit access points serve the user equipments in the downlink and optionally steer a beam toward the target in a multi-static sensing framework. A maximum a posteriori ratio test detector is developed for target detection in the presence of clutter, so-called target-free signals. Additionally, sensing spectral efficiency (SE) is introduced as a key metric, capturing the impact of resource utilization in ISAC. A power allocation algorithm is proposed to maximize the sensing signal-to-interference-plus-noise ratio while ensuring minimum communication requirements. Two ISAC configurations are studied: utilizing existing communication beams for sensing and using additional sensing beams. The proposed algorithm's efficiency is investigated in realistic and idealistic scenarios, corresponding to the presence and absence of the target-free channels, respectively. Despite performance degradation in the presence of target-free channels, the proposed algorithm outperforms the interference-unaware benchmark, leveraging clutter statistics. Comparisons with a fully communication-centric algorithm reveal superior performance in both cluttered and clutter-free environments. The incorporation of an extra sensing beam enhances detection performance for lower radar cross-section variances. Moreover, the results demonstrate the effectiveness of the integrated operation of sensing and communication compared to an orthogonal resource-sharing approach.

Click here to read this post out
ID: 806647; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 19
CC:
No creative common's license
Comments: