×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18411v1 Announce Type: new
Abstract: Multiquarks can have two-hadron components and hidden-color components in their wave functions. The presence of two-hadron components in multiquarks introduces a potential source of confusion, particularly with respect to their resemblance to hadronic molecules. On the other hand, hidden-color components are essential for distinguishing between multiquarks and hadronic molecules. In this work, we study the hidden-color components in the wave functions of the tetraquark mixing model, a model that has been proposed as a suitable framework for describing the properties of two nonets in the $J^P=0^+$ channel: the light nonet [$a_0 (980)$, $K_0^* (700)$, $f_0 (500)$, $f_0 (980)$] and the heavy nonet [$a_0 (1450)$, $K_0^* (1430)$, $f_0 (1370)$, $f_0 (1500)$]. Our analysis reveals a substantial presence of hidden-color components within the tetraquark wave functions. To elucidate the impact of hidden-color components on physical quantities, we conduct computations of the hyperfine masses, $\langle V_{CS}\rangle$, for the two nonets, considering scenarios involving only the two-meson components and those incorporating the hidden-color components. We demonstrate that the hidden-color components constitute an important part of the hyperfine masses, such that the mass difference formula, $\Delta M\approx \Delta \langle V_{CS}\rangle$, which has been successful for the two nonets, cannot be achieved without the hidden-color contributions. This can provide another evidence supporting the tetraquark nature of the two nonets.

Click here to read this post out
ID: 806740; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: