×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18610v1 Announce Type: cross
Abstract: High frequency gravitational waves (HFGWs) are predicted in various exotic scenarios involving both cosmological and astrophysical sources. These elusive signals have recently sparked the interest of a diverse community of researchers, due to the possibility of HFGW detection in the laboratory through graviton-photon conversion in strong magnetic fields. Notable examples include the redesign of the resonant cavities currently under development to detect the cosmic axion. In this work, we derive the sensitivities of some existing and planned resonant cavities to detect a HFGW background. As a concrete scenario, we consider the collective signals that originate from the merging of compact objects, such as two primordial black holes (PBHs) in the asteroid mass window. Our findings improve over existing work by explicitly discussing and quantifying the loss in the experimental reach due to the actual coherence of the source. We elucidate on the approach we adopt in relation with recent literature on the topic. Most notably, we give a recipe for the estimate of the stochastic background that focuses on the presence of the signal in the cavity at all times and showing that, in the relevant PBH mass region, the signal is dominated by coherent binary mergers.

Click here to read this post out
ID: 806754; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 16
CC:
No creative common's license
Comments: