×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2312.11320v2 Announce Type: replace
Abstract: We predict that the onset of gluon saturation can be uniquely identified using incoherent ${\rm J}/\psi$ production in Pb$\unicode{x2013}$Pb collisions at currently accessible energies of the LHC. The diffractive incoherent photo-production of a ${\rm J}/\psi$ vector meson off a hadron provides information on the partonic structure of the hadron. Within the Good-Walker approach it specifically measures the variance over possible target configurations of the hadronic colour field. For this process then, gluon saturation sets in when the cross section reaches a maximum, as a function of the centre-of-mass energy of the photon-hadron system ($W$), and then decreases. We benchmark the energy-dependent hot-spot model against data from HERA and the LHC and demonstrate a good description of the available data. We show that the study of the energy dependence of the incoherent production of ${\rm J}/\psi$ allows us to pinpoint the onset of saturation effects by selecting the region of Mandelstam-$t$ around 1 GeV$^2$ where the contribution of hot spots is dominant. We predict the onset of saturation in a Pb target to occur for $W$ around a few hundred GeV. This can be measured with current data in ultra-peripheral Pb$\unicode{x2013}$Pb collisions at the LHC.

Click here to read this post out
ID: 806768; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 17
CC:
No creative common's license
Comments: