×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2401.02522v2 Announce Type: replace
Abstract: In an optically active medium, such as a plasma that contains a neutrino background, the left-handed and right-handed polarization photon modes acquire different dispersion relations. We study the propagation of photons in such a medium, which is otherwise isotropic, within the framework of the covariant collissionless Boltzmann equation incorporating a term that parametrizes the optical activity. Using the linear response approximation, we obtain the formulas for the components of the photon polarization tensor, expressed in terms of integrals over the momentum distribution function of the background particles. The main result here is the formula for the P- and CP-breaking component of the photon polarization tensor in terms of the parameter involved in the new term we consider in the Boltzmann equation to describe the effects of optical activity. We discuss the results for some particular cases, such as long-wavelength and non-relativistic limits, for illustrate purposes. We also discuss the generalizations of the P- and CP-breaking term we included in the Boltzmann equation. In particular we consider the application to a plasma with a neutrino background and establish contact with calculations of the photon self-energy in those systems in the framework of Thermal Field Theory.

Click here to read this post out
ID: 806770; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: