×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2306.01049v3 Announce Type: replace
Abstract: The usual approach to Kaluza-Klein considers a spacetime of the form $M_4 \times K$ and identifies the isometry group of the internal vacuum metric, $g_K^0$, with the gauge group in four dimensions. In these notes we discuss a variant approach where part of the gauge group does not come from full isometries of $g_K^0$, but instead comes from weaker internal symmetries that only preserve the Einstein-Hilbert action on $K$. Then the weaker symmetries are spontaneously broken by the choice of vacuum metric and generate massive gauge bosons within the Kaluza-Klein framework, with no need to introduce ad hoc Higgs fields. Using the language of Riemannian submersions, the classical mass of a gauge boson is calculated in terms of the Lie derivatives of $g_K^0$. These massive bosons can be arbitrarily light and seem able to evade the standard no-go arguments against chiral fermionic interactions in Kaluza-Klein. As a second main theme, we also question the traditional assumption of a Kaluza-Klein vacuum represented by a product Einstein metric. This should not be true when that metric is unstable. In fact, we argue that the unravelling of the Einstein metric along certain instabilities is a desirable feature of the model, since it generates inflation and allows some metric components to change length scale. In the case of the Lie group $K = SU(3)$, the unravelling of the bi-invariant metric along an unstable perturbation also breaks the isometry group from $( SU(3) \times SU(3)) / Z_3$ down to $( SU(3) \times SU(2) \times U(1) )/ Z_6$, the gauge group of the Standard Model. We briefly discuss possible ways to stabilize the internal metric after that first symmetry breaking and produce an electroweak symmetry breaking at a different mass scale.

Click here to read this post out
ID: 806809; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: