×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18130v1 Announce Type: new
Abstract: We present a sampling-based trajectory optimization method derived from the maximum entropy formulation of Differential Dynamic Programming with Tsallis entropy. This method can be seen as a generalization of the legacy work with Shannon entropy, which leads to a Gaussian optimal control policy for exploration during optimization. With the Tsallis entropy, the optimal control policy takes the form of $q$-Gaussian, which further encourages exploration with its heavy-tailed shape. Moreover, in our formulation, the exploration variance, which was scaled by a fixed constant inverse temperature in the original formulation with Shannon entropy, is automatically scaled based on the value function of the trajectory. Due to this property, our algorithms can promote exploration when necessary, that is, the cost of the trajectory is high, rather than using the same scaling factor. The simulation results demonstrate the properties of the proposed algorithm described above.

Click here to read this post out
ID: 806882; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 17
CC:
No creative common's license
Comments: