×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18146v1 Announce Type: new
Abstract: True-time delayers (TTDs) are popular analog devices for facilitating near-field wideband beamforming subject to the spatial-wideband effect. In this paper, an adaptive TTD configuration is proposed for short-range TTDs. Compared to the existing TTD configurations, the proposed one can effectively combat the spatial-widebandd effect for arbitrary user locations and array shapes with the aid of a switch network. A novel end-to-end deep neural network is proposed to optimize the hybrid beamforming with adaptive TTDs for maximizing spectral efficiency. 1) First, based on the U-Net architecture, a near-field channel learning module (NFC-LM) is proposed for adaptive beamformer design through extracting the latent channel response features of various users across different frequencies. In the NFC-LM, an improved cross attention (CA) is introduced to further optimize beamformer design by enhancing the latent feature connection between near-field channel and different beamformers. 2) Second, a switch multi-user transformer (S-MT) is proposed to adaptively control the connection between TTDs and phase shifters (PSs). In the S-MT, an improved multi-head attention, namely multi-user attention (MSA), is introduced to optimize the switch network through exploring the latent channel relations among various users. 3) Third, a multi feature cross attention (MCA) is introduced to simultaneously optimize the NFC-LM and S-MT by enhancing the latent feature correlation between beamformers and switch network. Numerical simulation results show that 1) the proposed adaptive TTD configuration effectively eliminates the spatial-wideband effect under uniform linear array (ULA) and uniform circular array (UCA) architectures, and 2) the proposed deep neural network can provide near optimal spectral efficiency, and solve the multi-user bemformer design and dynamical connection problem in real-time.

Click here to read this post out
ID: 806886; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: