×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18320v1 Announce Type: new
Abstract: Real-time prediction plays a vital role in various control systems, such as traffic congestion control and wireless channel resource allocation. In these scenarios, the predictor usually needs to track the evolution of the latent statistical patterns in the modern high-dimensional streaming time series continuously and quickly, which presents new challenges for traditional prediction methods. This paper proposes a novel algorithm based on tensor factorization to predict streaming tensor time series online. The proposed algorithm updates the predictor in a low-complexity online manner to adapt to the time-evolving data. Additionally, an automatically adaptive version of the algorithm is presented to mitigate the negative impact of stale data. Simulation results demonstrate that our proposed methods achieve prediction accuracy similar to that of conventional offline tensor prediction methods, while being much faster than them during long-term online prediction. Therefore, our proposed algorithm provides an effective and efficient solution for the online prediction of streaming tensor time series.

Click here to read this post out
ID: 806909; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: