×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18500v1 Announce Type: new
Abstract: The evolution of an electrically conducting imcompressible fluid with nonconstant density can be described by a set of equations combining the continuity, momentum and Maxwell's equations; altogether known as the inhomogeneous Navier--Stokes--Maxwell system.
In this paper, we focus on the global well-posedness of these equations in two dimensions. Specifically, we are able to prove the existence of global energy solutions, provided that the initial velocity field belongs to the Besov space $\dot{B}^{r}_{p,1}(\mathbb{R}^2)$, with $r=-1+\frac{2}{p}$, for some $p\in (1,2)$, while the initial electromagnetic field enjoys some $H^s(\mathbb{R}^2)$ Sobolev regularity, for some $s \geq 2-\frac{2}{p} \in (0,1)$, and whenever the initial fluid density is bounded pointwise and close to a nonnegative constant. Moreover, if it is assumed that $s>\frac{1}{2}$, then the solution is shown to be unique in the class of all energy solutions.
It is to be emphasized that the solutions constructed here are global and uniformly bounded with respect to the speed of light $c\in (0,\infty)$. This important fact allows us to derive the inhomogeneous MHD system as the speed of light tends to infinity.

Click here to read this post out
ID: 806946; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 15
CC:
No creative common's license
Comments: