×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18621v1 Announce Type: new
Abstract: Communication-sensing integration represents an up-and-coming area of research, enabling wireless networks to simultaneously perform communication and sensing tasks. However, in urban cellular networks, the blockage of buildings results in a complex signal propagation environment, affecting the performance analysis of integrated sensing and communication (ISAC) networks. To overcome this obstacle, this paper constructs a comprehensive framework considering building blockage and employs a distance-correlated blockage model to analyze interference from line of sight (LoS), non-line of sight (NLoS), and target reflection cascading (TRC) links. Using stochastic geometric theory, expressions for signal-to-interference-plus-noise ratio (SINR) and coverage probability for communication and sensing in the presence of blockage are derived, allowing for a comprehensive comparison under the same parameters. The research findings indicate that blockage can positively impact coverage, especially in enhancing communication performance. The analysis also suggests that there exists an optimal base station (BS) density when blockage is of the same order of magnitude as the BS density, maximizing communication or sensing coverage probability.

Click here to read this post out
ID: 806973; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: