×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18641v1 Announce Type: new
Abstract: Parallel-across-the method time integration can provide small scale parallelism when solving initial value problems. Spectral deferred corrections (SDC) with a diagonal sweeper, which is closely related to iterated Runge-Kutta methods proposed by Van der Houwen and Sommeijer, can use a number of threads equal to the number of quadrature nodes in the underlying collocation method. However, convergence speed, efficiency and stability depends critically on the used coefficients. Previous approaches have used numerical optimization to find good parameters. Instead, we propose an ansatz that allows to find optimal parameters analytically. We show that the resulting parallel SDC methods provide stability domains and convergence order very similar to those of well established serial SDC variants. Using a model for computational cost that assumes 80% efficiency of an implementation of parallel SDC we show that our variants are competitive with serial SDC, previously published parallel SDC coefficients as well as Picard iteration, explicit RKM-4 and an implicit fourth-order diagonally implicit Runge-Kutta method.

Click here to read this post out
ID: 806976; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: