×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18724v1 Announce Type: new
Abstract: We present a new second order accurate structure-preserving finite volume scheme for the solution of the compressible barotropic two-phase model of Romenski et. al in multiple space dimensions. The governing equations fall into the wider class of symmetric hyperbolic and thermodynamically compatible (SHTC) systems and consist of a set of first-order hyperbolic partial differential equations (PDE). In the absence of algebraic source terms, the model is subject to a curl-free constraint for the relative velocity between the two phases. The main objective of this paper is, therefore, to preserve this structural property exactly also at the discrete level. The new numerical method is based on a staggered grid arrangement where the relative velocity field is stored in the cell vertexes while all the remaining variables are stored in the cell centers. This allows the definition of discretely compatible gradient and curl operators, which ensure that the discrete curl errors of the relative velocity field remain zero up to machine precision. A set of numerical results confirms this property also experimentally.

Click here to read this post out
ID: 806997; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: