×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.06373v3 Announce Type: replace
Abstract: Describing statistical dependencies is foundational to empirical scientific research. For uncovering intricate and possibly non-linear dependencies between a single target variable and several source variables within a system, a principled and versatile framework can be found in the theory of Partial Information Decomposition (PID). Nevertheless, the majority of existing PID measures are restricted to categorical variables, while many systems of interest in science are continuous. In this paper, we present a novel analytic formulation for continuous redundancy--a generalization of mutual information--drawing inspiration from the concept of shared exclusions in probability space as in the discrete PID definition of $I^\mathrm{sx}_\cap$. Furthermore, we introduce a nearest-neighbor based estimator for continuous PID, and showcase its effectiveness by applying it to a simulated energy management system provided by the Honda Research Institute Europe GmbH. This work bridges the gap between the measure-theoretically postulated existence proofs for a continuous $I^\mathrm{sx}_\cap$ and its practical application to real-world scientific problems.

Click here to read this post out
ID: 807110; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 18
CC:
No creative common's license
Comments: