×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18237v1 Announce Type: new
Abstract: A unified analytical solution is presented for constructing the phase space near collinear libration points in the Circular Restricted Three-body Problem (CRTBP), encompassing Lissajous orbits and quasihalo orbits, their invariant manifolds, as well as transit and non-transit orbits. Traditional methods could only derive separate analytical solutions for the invariant manifolds of Lissajous orbits and halo orbits, falling short for the invariant manifolds of quasihalo orbits. By introducing a coupling coefficient {\eta} and a bifurcation equation, a unified series solution for these orbits is systematically developed using a coupling-induced bifurcation mechanism and Lindstedt-Poincar\'e method. Analyzing the third-order bifurcation equation reveals bifurcation conditions for halo orbits, quasihalo orbits, and their invariant manifolds. Furthermore, new families of periodic orbits similar to halo orbits are discovered, and non-periodic/quasi-periodic orbits, such as transit orbits and non-transit orbits, are found to undergo bifurcations. When {\eta} = 0, the series solution describes Lissajous orbits and their invariant manifolds, transit, and non-transit orbits. As {\eta} varies from zero to non-zero values, the solution seamlessly transitions to describe quasihalo orbits and their invariant manifolds, as well as newly bifurcated transit and non-transit orbits. This unified analytical framework provides a more comprehensive understanding of the complex phase space structures near collinear libration points in the CRTBP.

Click here to read this post out
ID: 807169; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: