×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18573v1 Announce Type: cross
Abstract: We consider the classification problem of quantum spin chains invariant under local decomposable group actions, covering matrix product unitaries (MPUs), using an operator algebraic approach. We focus on finite group symmetries hosting both symmetric and symmetry broken phases. The local-decomposable group actions we consider have a 3-cocycle class of the symmetry group associated to them. We derive invariants for our classification that naturally cover one-dimensional symmetry protected topological (SPT) phases. We prove that these invariants coincide with the ones of [J. Garre Rubio et al, Quantum 7, 927 (2023)] using matrix product states (MPSs) techniques, by explicitly working out the GNS representation of MPSs and MPUs, resulting in a useful dictionary between both approaches that could be of independent interest.

Click here to read this post out
ID: 807185; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: