×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.17947v1 Announce Type: cross
Abstract: A nonlinear RLC resonator is investigated experimentally and numerically using bifurcation analysis. The nonlinearity is due to the parallel combination of a semiconductor rectifier diode and a fixed capacitor. The diode's junction capacitance, diffusion capacitance, and DC current-voltage relation each contribute to the nonlinearity. The closely related RL-diode resonator has been of interest for many years since its demonstration of period-doubling cascades to chaos. In this study a direct comparison is made of dynamical regime maps produced from simulations and circuit measurements. The maps show the variety of limit cycles, their bifurcations, and regions of chaos over the 2-d parameter space of the source voltage's frequency and amplitude. The similar structures of the simulated and experimental maps suggests that the diode models commonly used in circuit simulators (e.g., SPICE) work well in bifurcation analyses, successfully predicting complex and chaotic dynamics detected in the circuit. These results may be useful for applications of varactor-loaded split ring resonators.

Click here to read this post out
ID: 807198; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 17
CC:
No creative common's license
Comments: