×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18629v1 Announce Type: cross
Abstract: Charge-exchange reactions are versatile probes for nuclear structure. In particular, when populating isobaric analog states, these reactions are used to study isovector nuclear densities and neutron skins. The quality of the information extracted from charge-exchange data depends on the accuracy of the reaction models and their inputs; this work addresses these two points. First, we quantify the uncertainties due to effective nucleon-nucleus interactions by propagating the parameter posterior distributions of the recent global optical model KDUQ [1] to $(p,n)$ reaction observables populating the isobaric analogue state, at beam energies in the range of $25-160$ MeV. Our analysis, focusing on $^{48}$Ca, shows that the total parametric uncertainties on the cross sections are around 60-100%. The source of this uncertainty is mainly the transition operator as the uncertainties from the distorted waves alone are less than about 15%. Second, we perform a comparison between two- and three-body models that both describe the dynamics of the reaction within the DWBA. The predictions from these two models are similar and generally agree with the available data, suggesting that 1-step DWBA is sufficient to describe the reaction process. Only at a beam energy of 25 MeV there are possibly signs that a 1-step assumption is not fully correct. This work provides motivation for the quantification of uncertainties associated with the transition operator in three-body model. It also suggests that further constraint of the optical potential parameters is needed for increased model precision.

Click here to read this post out
ID: 807210; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: